
. 

4 i 

Efficient Parallel Algorithms for String Editing 
and Related Problems 

Alberro Aposrolico 
Mikhail J .  Arallah 
Lawrence Larrnore 

H .  S. McFaddin 

September 1SY8 

Research Institute for A-dvanced Computer Science 
NASA Ames Research CeiItei 

P.MCS Technical Report 88.26 

NASA Cooperative Agreement Number NCC 2-387 

[NASA-CEi-185410) E F F I C I E N T  PARALLEL N89 -26 449 
ALGOBITHPIS F O B  STRING E D I T I N G  A N D  h E L A T E D  
PHOBLEHS (Research I n s t ,  for Advanced 

Unclas  Computer Sc ience )  3 1  p C S C L  U 9 B  
G3/62 0217897 

I 
Research Institute for Advanced Computer Science 

\ 

i 



Efficient Parallel Algorithms for String Editing 
and Related Problems 

Alberto Apostolico* 
Mikhail J .  Atallah 

H .  S .  McFaddid 
Lawrence Larmore # 

Research Institute for Advanced Computer Science 
NASA Ames Research Center 

RIACS Technical Report 88.26 
September 1988 

The string editing problem for input strings x and y consists of transforming x into 
y by performing a series of weighted edit operations on x of overall minimum 
cost. An edit operation on x can be the deletion of a symbol from x, the insertion 
of a symbol in x or the substitution of a symbol x with another symbol. This 
problem has a well known O(lxl lyl) time sequential solution [25]. We give the 
efficient PRAM parallel algorithms for the string editing problem. If m=(Ixl, lyl) 
and n=max(lxl, lyl), then our CREW bound is @log rn log n) time with O(rnn/ log 
rn) processors. In all algorithms, space is O(rnn). 

Key words and phrases: Strint-to-string correction, edit distances, spelling 
correction, longest common subsequence, shortest paths, grid graphs, analysis of 
algorithms, parallel computation, cascading divide-and-conquer 

AMs subject classification: 68Q2.S 

*Dept. of Computer Science. Purdue University, West Lafayette. IN 47907. Cumnt address: Dept. of Pure 
and Applied Mathematics University of L'Aquila, Italy. This author's research was supported in part by the 
Italian Ministry of Education and by the Italian National Research Council throueh IASI-CNR. Rome, Italy. 

tDept. of Computer Science. Purdue University, West Lafayette. IN 479U7. This nuthor's research was 
supported in part by Cooperative A p e m e n t  NCC 2-387 between the National Aeronautics and Space 
Administration (NASA, ,and the Universities Space Research Association (USRA) while the author was a 
Visitine Scientist at the Center for Advanced Architectures at RL4CS. and by the Ol'fice of Naval Research 
under Grants NOO14-84-K-0502 and N(MM)14-86-K-0689. a id  the National Science Foundation under Grant 
DCR-8451393. with matchine funds from AT&T. 

tDept. of Computer Science, University of Cahfomia. h i n e .  CA 02717. ' l h s  author's research was 
supported by the University of California. b i n e .  

SDept. of Computer Science, Purdue University, West Lafayette. IN 4 7 0 7 .  This author's research was 
.upported in part by Cooperative Aereement NCC 2-387 between the National Aeronautics and Space 
.Administration f NASA) and the Univerzities Space Research Association i USRA) while the author was 
visiting the Center for Adv:mced .Architectures KIACS. 



? 

Efficient Parallel Algorithms for String Editing 
and Related Problems 

Albert0 Apostolico’ Mikhail J. A tallaht Lawrence L. Lamore* 
Purdue University Purdue University U. of California, Irvine 

H. S. McFaddinS 
Purdue University 

Abstract  

The string editing problem for input strings z and y consists of transforming z into 
y by performing a series of weighted edit operations on z of overall minimum cost. An 
edit operation on z can be the deletion of a symbol from z, the insertion of a symbol 
in z or the substitution of a symbol of z with another symbol. This problem has a well 
known O( Izllvl) time sequential solution [25]. We give efficient PRAM parallel algo- 
rithms for the string editing problem. If m = min(lz1, Iyl) and n = max(1z1, Iyl), then 
our CREW bound is O(1og rn log n) time with O(rnn/ log rn) processors. Our CRCW 
bound is O((log n(1og log rn)2) time with O(mn/ log logrn) processors. In all algorithms, 
space is O(mn). 

Key  words and phrases: String-to-string correction, edit distances, spelling correction, 
longest common subsequence, shortest paths, grid graphs, analysis of algorithms, par- 
allel computation, cascading divide-and-conquer 

AMS subject classification: 6SQ25 

‘Dept. of Computer Science, Purdue University, West Lafayette, IN 47907. Current Address: Dept. 
of Pure and Applied Mathematics, University of L’Aquila, Italy. This author’s research was supported in 
part by the Italian Ministry of Education and by the Italian National Research Council through IASI-CNR, 
Rome, Italy. 

‘Dept. of Computer Science, Purdue University, West Lafayette, IN 47907. This author’s research was 
supported by the Office of Naval Research under Grants N00014-84-K-0502 and N00014-86-K-0689, and 
the National Science Foundation under Grant DCR-8451393, with matching funds from ATdcT. Par t  of 
this research was carried out while this author was visiting the Research Institute for Advanced Computer 
Science, NASA Ames Research Center, Moffett Field, California. 

*Dept. of Computer Science, University of California, Irvine, CA 92717. This author’s research was 
supported by the University of California, Irvine. 

fDept. of Computer Science, Purdue University, West Lafayette, IN 47907. This author’s research was 
carried out while he was at RIACS, NASA Ames Research Center, California. 

1 



. 
1. Introduction 

One of the major goals of parallel algorithm design for PRAM models is to come up with 

parallel algorithms that are both fast and efficient, i.e. that run in polylog time while the 

product of their time and processor complexities is within a polylog factor of the time 

complexity of the best sequential algorithm for the problem they solve. This goal has 

been elusive for many simple problems that are trivially in the class NC (recall that NC 

is the class of problems that are solvable in O(logo(') n)  parallel time by a PRAM using a 

polynomial number of processors). For example, topological sorting of a DAG and finding 

a breadth-first search tree of a graph are problems that are trivially in NC, and yet it is not 

known whether either of them can be solved in polylog time with n2 processors. 

This paper gives parallel algorithms for the string editing problem that are both fast and 

efficient in the above sense. We give a CREW-PRAM algorithm that runs in O(log m log n)  

time with O(mn/logm) processors, where m (resp. n)  is the length of the shorter (resp. 

longer) of the two input strings. We also give a CRCW-PRAM algorithm that runs in 

O(logn(loglogm)*) time with O(mn/ loglogm) processors. In both algorithms, space is 

O(mn). 

In related work, Ranka and Sahni I171 have designed a hypercube algorithm for m = n 

that r m s  in O ( J s )  time with n2 processors, and have considered time/processor 

t i a d d % .  In independent work, Slathies [E] has obtained a CRCW-PRAM algorithm for. 

the edit distance that runs in O(1ogniogm) time with O(mn) processors if the weight of 

every edit operation is smaller than a given constant integer. 

Recall that the CREW-PRAM model of parallel computation is the synchronous shared- 

memory model where concurrent reads are allowed but no two processors can simultaneously 

attempt to write in the same memory location (even if they are trying to  write the same 

thing). The CRCW-PRAM differs from the CREW-PRAM in that it allows many processors 

to  write simultaneously in the same memory location: in any such common-write contest, 

only one processor succeeds, but it is not known in advance which one. 

The rest of this introduction reviews the problem, its importance, and how it can be 

viewed as a shortest-paths problem on a special type of graph. 

Let z be a string of 1.1 symbols on some alphabet I. We consider three edit operations 

on x, namely, deletion of a symbol from z, insertion of a new symbol in z and substitution 

of one of the symbols of z with another symbol from I .  We assume that each edit operation 

2 



has an associated nonnegative real number representing the cost of that operation. hiore 

precisely, the cost of deleting from z an occurrence of symbol a is denoted by D(u) ,  the cost 

of inserting some symbol u between any two consecutive positions of z is denoted by I ( a )  

and the cost of substituting some occurrence of u in z with an occurrence of b is denoted by 

S(a,  b) .  An edit script on z is any consistent (Le., all edit operations are viable) sequence u 

of edit operations on z, and the cost of u is the sum of all costs of the edit operations in u. 

Now, let z and y be two strings of respective lengths 1.1 and Iyl. The string editing 

problem for input strings 2 and y consists of finding an edit script u' of minimum cost 

that transforms 2 into y. The cost of u' is the edit distance from z to y. In various ways 

and forms, the string editing problem arises in many applications, notably, in test editing, 

speech recognition, machine vision and, last but not least, molecular sequence comparison. 

For this reason, this problem has been studied rather extensively in the past, and forms 

the object of several papers (e.g. [13,14,16,18,20,19,25], to list a few). The problem is 

solved by a serial algorithm in O(lzllyl) time and space, through dynamic programming 

(cf. for example, [25]). Such a performance represents a lower bound wheu the queries on 

symbols of the string are restricted to tests of equality [2,26]. Many important problems are 

special cases of string editing, including the longest common subsequence problem and the 

problem of upprozimute matching between a pattern string and text string (see [11,21.23] 

for the notion of approximate pattern matching and its connectioo to thi stricg editing 

problem). Xeedless to say that our solution to the generd string editing problem impiies 

similar bounds for all these special cases. 

The criterion that subtends the computation of edit distances by dynamic programming 

is readily stated. For this, let C( i , j ) ,  (0 5 i 5 121, 0 5 j 5 Iyl) be the minimum cost of 

transforming the prefix of z of length i into the prefix of y of length j .  Let Sk denote the 

k-th symbol of string s. Then: 

for all i ,j,  (1 5 i 5 121; 1 5 j 5 Iyl). Hence C ( i , j )  can be evaluated row-by-row or column- 

by-column in O((zllyl) time [25]. Observe that, of all entries of the C-matrix, only the three 

entries C(i - 1,j - l ) ,  C(; - 1 , j )  and C(i , j  - 1) are involved in the computation of the 

final value of C( i , j ) .  Such interdependencies among the entries of the C-matrix induce an 

(lzl + 1) x (lyl + 1) grid directed acyclic graph (grid DAG for short) associated with the 

string editing problem. 

3 



0 

Figure 1. Example of a 5 x 10 grid DAG. 

Definition 1 An m x n grid D A G  is a directed acyclic graph whose vertices are the rnn 

points of an m x n grid, and such that the only edges from grid point (i, j )  are to grid points 

( i , j  + l ) ,  ( i  + 1,j) and ( i  + 1.j + 1). 

Figure 1 shows an example of a grid DAG and also illustrates our convention of drawing 

the points such that point ( i , j )  is at  the i-th row from the top and j - t h  column from the 

left. Note that the top-left point is (1 , l )  and has no edge coming into it (i.e. is a source), 

and that the bottom-right point is (m,n) has no edge leaving it (i.e. is a sink). 

We associate an (1.1 + 1) x (Iyl+ 1) grid DA4G G with the string editing problem in the 

obvious way: the (121 + l)(lyl+ 1) vertices of G are in one-to-one correspondence with the 

(121 + 1)( Iyl+ 1) entries of the C-matrix, and the cost of an edge from vertex (k, I) to vertex 

( i , j )  is equal to I ( y i )  if k = i and I = j - 1, to D ( Z i )  if k = i - 1 and 1 = j ,  to S(zi,yj) if 

k = i - 1 2nd I = J' - 1. JVe c2n restrict oc; atte2tion to edit scripts which are not wasteful 

in the s e ~ s e  t ta t  :key do no obviocsly ineEcient moves like: inserting then deleting the 

same symbol, or changing a symbol into a new symbol which they then delete, etc. More 

formally, the only edit scripts considered are those that apply at most one edit operation 

to a given symbol occurrence. Such edit scripts that transform z into y or vice versa are in 

one to one correspondence to the weighted paths in G that originate at the source (which 

corresponds to C(0,O)) and end on the sink (which corresponds to C(l.1, lyl)). Thus, in 

order to establish the complexity bounds claimed in this paper, we need only establish them 

for the problem of finding a shortest (i.e. least-cost) source-to-sink path in an m x n grid 

DAG G. Throughout, the Zeft boundary of G is the set of points in its leftmost column. 

The right, top, and bottom boundaries are analogously defined. The boundary of G is the 

union of its left, right, top and bottom boundaries. 

The rest of the paper is organized as follows. Section 2 gives a preliminary CREW- 

PRAM algorithm for computing the length of a shortest source-to-sink path, assuming 

m = n. Section 3 gives an algorithm that uses a factor of lognz fewer processors than 

4 



Figure 2. Illustrating how the problem is partitioned. 

the previous one and that will be later needed in our best CREW algorithm (given in 

Section 6 ) .  Section 4 sketches how to extend the previous algorithm to the case rn 5 n. 
Section 5 considers computing the path itself rather than just its length. Section 6 gives 

our best CREW-PRASI algorithm. Section 7 gives the CRCW-PR.4M algorithm. Section 

8 concludes. 

2. A preliminary algorithm 

Throughout this section, m = n, i.e. G is an m x m grid DAG. Let DISTG be a (271-1) x (2n) 

matrix containing the lengths of all shortest paths that begin at  the top or left boundary 

of G, and end at  the right or bottom boundary of G. In this section we establish that the 

matrix DISTG can be computed in O( l02  m) time, O(m2) space, and with O(m2/logrn) 

processors by a CREW-PRAM. The preliminary algorithm that achieves this is intended 

as a %armup" for the better algorithms that follow in later sections. The prelirnicary 

algorithm works as follows: divide the m x m grid into four ( m / 2 )  x ( m / 2 )  grids -4.8, C, D, 
as shown in Figure 2. In parallel, recursively solve the problem for each of the four grids 

A,  B ,  C, D ,  obtaining the four distance matrices D I S T A ,  DISTB,  DISTc ,  D I S T D .  Then 

obtain from these four matrices the desired matrix DISTc. The main problem is how to 

perform this last step efficiently. 

The performance bounds we claimed for this preliminary algorithm would immcdidely 

follow if we can show that, for any integer q 5 m of our choice, DISTc can be obtained 

from D I S T A ,  D I S T B ,  D I S T c ,  DISTD in time O((q + 1ogm)logm) and with O ( m 2 / q )  

processors. This is because the time and processor complexities of the overnll algorithm 

would then obey the following recurrences: 

5 



with boundary conditions T ( d )  = c3q and P(JiT) = 1, where cl,c2,c3 are constants. The 

solutions are T ( m )  = O((q + logm)log* n) and P ( m )  = O(m*/q ) .  Choosing q = logm 

would then establish the desired result. Therefore in the rest of this section, we merely 

concern ourselves with showing that DISTG can be obtained from DISTA,  DISTB, D I S T c ,  

D I S T D  in time O((q+ 1ogrn)logm) and with O ( m 2 / q )  processors. 

Let DISTAUB be the (3m/2) x (3m/2) matrix containing the lengths of shortest paths 

that begin on the top or left boundary of A U B and end on its right or bottom boundary. 

Let DISTCUD be analogously defined for C U D. The procedure for obtaining D I S T c  

performs the following Steps 1-3: 

1. Use D I S T A  and D I S T B  to  obtain DISTAUB. 

2. Use D I S T c  and D I S T D  to obtain DISTCUD. 

3. Use DISTAUB and D I S T C ~ D  to  obtain D I S T c .  

We only show how Step 1 is done, since the procedures for Steps 2 and 3 are very similar. 

First, note that the entries of DISTAUB that correspond to shortest paths that begin and 

end on the boundary of A (resp. B )  are already available in D I S T A  (resp. D I S T B ) ,  and 

can therefore be obtained in O(q) time. Therefore we need only worry about the entries of 

DIST.a,s that correspond to p i h s  that begin on the to? or left bount2ary of =I and end 

OG the right or bo t ion  bouzear:; of 3. Xssign to every point 2' on the top or lsft boundary 

of A a group of m / q  processors. The task of the group of m/q processors assigned to  v is 

to  compute the lengths of all shortest paths that begin at v and end on the right or bottom 

boundary of B. It suffices to show that it can indeed do this in time O((q + 1ogm)logm). 

0 bserve that: 

DISTAUB(V,  w )  = mh{DiS tA(v ,p )  + D i s t ~ ( p ,  w )  I 
(1) p is on the boundary common to A and B }  

Using (1) t o  compute D I S T A ~ B ( ~ , W )  for a given v ,  w pair is trivial to do in time O(q + 
log(m/q)) by using O ( m / q )  processors for each such pair, but that would rcyuire an unac- 

ceptable 0 ( m 3 / q )  processors. We have only m / q  processors assigned to  v for computing 

DISTAUB(V, w )  for all w on the bottom or right boundary of B. Surprisingly, these m / q  

processors are enough for doing the job in time O((q + log(m/q)) logm). The procedure is 

given below. 

6 



Figure 3.  Illustrating the procedure €or computing the function e. 

Definition 2 Let u be any point on the left or top boundary of A, and let w be any point on 

the bottom or right boundary of B. Let B(v, w )  denote the leftmost p which minimizes the 

right-hand-side of ( 1 ) .  Equivalently, 6 ( u ,  w) is  the leftmost point of the common boundary 

o f A  and B such that a shortest u-to-w path goes through it. 

Define a linear ordering < E  on the m points at the bottom and right boundaries of 

B,  such that they are encountered in increasing order of < B  by a walk that starts at the 

leftmost point of the lower boundary of B and ends at the top of the right boundary of B. 

Let LB be the list of m points on the lower and right boundaries of B ,  sorted by incteasino, 

oidt?r according to the < B  relationship. For any w1, WL:P 5 L3, we have the following: 

If w1 < B  w2 then B(u ,  wy) is not to the right of 8(v ,  wz). (2) 

Before proving property (2), we sketch how it is used to obtain an O((q + log(rn/q)) l ogn)  

time and o ( m / q )  processor algorithm for computing DIsT'A"B(v, w) for dl w E LB. We 

henceforth use 8(w) as a shorthand for 6(v ,w) ,  with v being understood. It suffices to 

compute 8(w)  for all w E LB. The procedure for doing this is recursive, and takes as input: 

0 A particular range of r contiguous values in L B ,  say a range that begins at point a 

* and ends at  point c, a < B  c, 

0 The points 8(a)  and 8(c ) ,  

0 A number of processors equal to  max{l,(p+ r ) / q }  where p is the number of points 

between 8 ( a )  and 6 ( c )  on the boundary common to A and B. (See Figure 3.) 

7 



V 

Figure 4. Illustrating the proof of property (2). 

The procedure returns O(w) for every a < E  w < E  c. If r = 1 then there is only one such 

w and there are enough processors to  compute 6(w) in time O(q + log(p/q)). If r > 1 then 

all of the max(1, ( p  + r ) / q }  processors get assigned to the median of the a-to-c range and 

compute, for that median (call it point b ) ,  the value B(b)  in time O(q + log(p/q)). Because 

of (2), it is now enough for the procedure to recursively call itself on the a-to-b range and 

(in parallel) the b-to-c range. The first (resp. second) of these recursive calls gets assigned 

max{l , (p~  + ~ / 2 ) / q }  (resp. max(l,(pz + r / 2 ) / q } )  processors, where p1 (resp. p2) is the 

number of points between B(a) and B(b)  (resp. between O(6)  and B(c)). Because p1 + p 2  = p ,  

thsie L-s enong3 ?:ocesso:s ai-zilable for the two reccrsive CAS. (See Fignre 3.) In the 

irilial call to the ? r o c e c x ~ .  i t  is siven (i)  the whole Est La, (ii) the 8 of the first and last 

point of Lg, and (iii) 3m/2q processors. The depth of the recursion is logm, at each level 

of which the time taken is EO more than O(q + log(m/q)). Therefore the procedure takes 

time O((q + log(m/q)) logm) with O(nz/q)  processors. We conclude that the preliminary 

solution would immediately follow if we establish (2). 

We prove (2) by contradiction: Suppose that, for some w1, w2 E LE, we have w1 < B  w2 

and B(w1) is to the right of 8(w,) ,  as shown in Figure 4. By definition of the function 0 

there is a shortest path from v t o  w1 going through e(w1) (call this path a), and one from v 

to  w2 going through 6 ( ~ 2 )  (call it p). Since w1 < B  w2 and B(w1) is to the right of B(w2), the 

two paths a and @ must cross at least once somewhere in B: let z be such an intersection 

point. See Figure 4. Let pre f i z (a)  (resp. p r e f i z ( @ ) )  be the portion of a (resp. /3) that 

goes from v to z. We obtain a contradiction in each of two possible cases: 

0 Case 1. The length of p r e f i z ( a )  differs from that of pre f i z (0 ) .  FVithout loss of 



generality, assume it is the length of pref ix( /?)  that is the smaller of the two. But 

then, the v-to-zol path obtained from a by replacing p r e f i t ( a )  by pre f it(@) is shorter 

than a, a contradiction. 

0 Case 2. The length of p r e f i z ( a )  is same as that of p r e f i z ( P ) .  In a ,  replacing 

p r e f i s ( a )  by p r e f i x ( $ )  yields another shortest path between v and wl, one that 

crosses the boundary common to A and B at a point to  the left of e ( q ) ,  contradicting 

the definition of the function 8. 

This completes the proof of (2). 

A referee pointed out that ideas similar to  those in this Section were independently found 

by Baruch Schieber and Uzi Vishkin. 

3. Using fewer processors 

This section gives an algorithm that has same time complexity as that of the previous 

section, but whose processor complexity is a factor of logm better. This is more than a 

mere “warmup” for our best CREW algorithm of Section 6: the algorithm of Section 6 will 

actually use the technical result, given in this section, that DISTAUB can be obtained from 

DISTA and DISTB with O(m2) total work. 

We establish the following lemma. 

Lemma 1 Let G be an m x m grid DAG. Let DISTG be a (2m) x (2m) matriz containing 

the lengths of all shortest paths that begin at the top or left boundary of G, and end at the 

right or bottom boundary of G. The matrix DISTG can be computed in O(log3m) time, 

0(m2) space, and with O(m2/log2 m) processors by a CREW-PRAM. 

We prove the above lemma by giving an algorithm whose processor complexity is a log m 

factor better than that of the preliminary solution of Section 2. We illustrate the method 

by showing how DISTAUB can be obtained from DISTA and DISTB in O(log2n)  time 

and O(m2/ log2 m) processors. The preliminary procedure for computing DISTAUB can 

be seen to  do a total amount of work which is O(m’1ogm). Our strategy will be to  first 

give a procedure which has same time and processor complexities as the preliminary one, 

but which does a total amount of work which is only O(m2). Our claimed bounds for the 

computation of D I S T A ~ B  from DISTA and DISTB will then follow from this improved 

procedure and from Brent’s theorem [5] :  

9 



Theorem 1 (Brent) Any synchronous parallel algorithm taking time T that consists of a 

total of W opemtions can be simulated b y  P processors in time O((TV/P) + T ) .  

Proof. See [j]. 0 

There are actually two qualifications to Brent’s theorem before one can apply it to a 

PRAM: (i) at the beginning of the i-th parallel step, we must be able to compute the 

amount of work W; done by that step, in time O(W; /P)  and with P processors, and (ii) we 

must know how to assign each processor to its task. Both (i) and (ii) will trivially hold in 

our framework. 

Let L A  and < A  be defined analogously to LB and <B, respectively. In other words, L.4 

is a list of the rn points on the left and top boundaries of A ,  sorted in the order in which 

they are encountered by a walk that starts at the lowest point of the left boundary of A 

and ends at  the rightmost point of the top boundary of A (i.e. sorted by increasing order 

according to  the < A  relationship). A symmetric version of (2) holds, i.e., for any w E Lg 

and any two points 01 and 0 2  of LA, we have the following: 

If v1 < A  v2 then 6 ( ~ 1 ,  w) is not to the right of O(v2, w). (3) 

The proof of (3) is identical to that of (2) and is therefore omitted. 

Let P be tl?e m x ( n , ! 2 )  sxbmatrix of 0 1 . 9 ~ ~  cor?tz.kCzg the ierg;hs of the shoites: 

paths :hat begin at the to? or !eft bonadary of -4. and end a; its ~ O X O I E  bo2ndzry. Let Q 
be the ( m / 2 )  x m submatrix of DISTB containing the lengths of the shortest paths that 

begin at  the top boundary of B ,  and end a t  its bottom or right boundary. By definition, 

the rows of P are indexed by the entries of LA,  the columns of Q are indexed by the entries 

of L B ,  and the columns of P (hence the rows of Q) are indexed by the m/2 points at the 

common boundary of -4 and B ,  sorted from left to right. The problem we face is that of 

“multiplying” the rn x ( m / 2 )  matrix P and the ( m / 2 )  x rn matrix Q in the closed semiring 

(min,+). In matrix terminology, 6 ( v , w )  is the smallest index k, 1 5 k 5 m/2,  such that 

PQ(v ,w)  = P ( v , k )  + Q ( k , w ) .  We give the procedure below for the (more general) case 

where P is an 1 x h matrix, and Q is an h x 1 matrix, 1 5 2h. The only structure of 

these matrices that our algorithm uses is the following property (4), which is merely a re- 

statement of properties (2) and (3) using matrix terminology: 

10 



, To compute the product of P and Q in the closed semiring (min, +), it suffices to compute 

e(v, w) for all 1 5 v, w 5 e .  To compute the product PQ (i.e. the function e), we use the 

following procedure which runs in O(log! log h )  time and O(th /  log h )  processors and O ( t h )  

total work: 

1. Recursively solve the problem for the product P’Q’ where P‘ (resp. Q’) is the ( E / 2 )  x h 

(resp. h x (t/2)) matrix consisting of the odd rows (resp. odd columns) of P (resp. 

Q). This gives B(v, w) for all pairs (v, w) whose respective parities are (odd,odd). If 

Work( t ,h )  and T(L,h) denote the total work and time for this procedure, then this 

, step does W o r k ( t / 2 ,  h )  work in T(!/2,  h )  time. 

2. Compute e(v, w) for all pairs (v, w) of parities (even,odd). This is done as follows. In 

parallel for each odd w, assign h l logh  processors to w, with the task of computing 

8(v ,w)  for all even v. The fact that we already know B(v,w) for all odd v, together 

with property (4), implies that these hllogh processors are enough to do the job in 

O(1ogh) time. The work done is then O ( h )  for each such w ,  for a to td  of O ( t h )  work 

for this step. 

3. Compute 6(v, w) for all pairs (v, w) of parities (odd,even). The method used is iden- 

tical to that of the previous step and is therefore omitted. 

4. Compute e ( v ,  w) for all pairs ( v ,  w) of parities (even,even). The method is very similar 

to that of the previous two steps and is therefore omitted. 

The time, processor, and work complexities of the above method satisfy the recurrences: 

T( t ,  h )  5 T(t/2,  h )  + c1 lo:: h, 

I P ( t ,  h )  5 max(P(tl2,  h),th/  logh}, 

Work( t ,  h)  5 Work(t /2 ,  h)  + czth, 

-where cl and c2 are constants. These recurrences imply that T ( t , h )  = O(logtlogh), 

P ( t ,  h)  = O(th /  logh), and Work(!, h )  = O(th) .  This, together with Theorem 1 (Brent’s 

theorem) in which T = logtlogh, P = Lh/q, and W = t h ,  implies that the above algorithm 

can be simulated by t h / q  processors in O(q + logtlogh) time. In our case, we have t = m 

and h = m/2 ,  implying that PQ (and hence D I S T A ~ B )  can be obtained from P and Q in 

O(q + log2 m )  time with O(m*/q)  processors. 

11 



G 

Figure 5 .  Illustrating L e m m a  2. 

The above method enables us to obtain D I S T c  from DISTA,  D I S T B ,  DISTc ,  DISTD 

in O(q + log’m) time and O(m2/q )  processors. This implies that the overall divide-and- 

conquer algorithm runs in O((q + log’ m)logm) time with O(m2/q )  processors. Choosing 

g = log’ m establishes Lemma 1. 

4. The case m 5 n 

This section generalizes the algorithm for the case m 5 n. The main result is the following. 

Theorem 2 Let G be an m x n grid DAG, m 5 n. The length of a shortest source-to-sink 

path in G can be computed by  a CREW-PRAM in O(1ognlog’ m) time, O(mn) space, and 

with O(mn/ log’ m) pmessors. 

Note that, if G is m x n with m 5 n ,  then nsiag the same idea as in Section 3 would 

r e sd t  iE an ucaccqtzble (m - E ) ( =  + ~ ; ) / l o s ~ ( r n  - n)  processor ca=?ie,xi;y. tho D I S T s  

c a t i i x  we are cornputing now being (m-n )  x (m-n). h order to prove oar ci.zi3.d bounds, 

we shall abandon the goal of computing such a matrix D I S T c  and settle for computing a 

D c  matrix that contains less information than D I S T c ,  but enough to obtain the desired 

quantity: the length of a shortest source-tesink path in G. 

Definition 3 For any m x n grid DAG G; m ,< n, let D c  be the m x m matnk containing 

the lengths of all the shortest paths that begin at the left boundary of G, and end at the right 

boundary of G. 

Note that D c  is a submatrix of DIST’. 

The following lemma is another ingredient that we need. 

Lemma 2 Let G be an m x m’ grid DAG that is partitioned by a vertical line into GI 
and G2. (See Figure 5.) Then, given Dc1 and Dc,, the matriz D c  can be computed by a 

CREW-PRAM in O(log2 m) time, O(m2) space, and with O(m2/ log’ m )  processors. 

12 



Figure 6. Illustrating the partitioning of G. 

Proof. The algorithm proving the above lemma is similar to the procedure we used in 

Section 3 to  obtain D I S T A u ~  from DISTA and DISTB, and is omitted. 

We are now ready to prove Theorem 2. 

Proof of Theorem 2. Without loss of generality, assume that m divides n (if not then 

G can always be “padded” with extra vertices and zero-cost edges so as to  make it m x n’ 

where m divides n‘ and n’ - n 5 m). Partition G by vertical lines into n /m grid DAGS 

GI,.  . . , G,,/,, where each G; is m x rn (see Figure 6). In parallel for each i E { 1,. . . , nlrn}, 

use Lemma 1 to obtain the DISTc,  matrices. This takes O(lo$rn) time with a total of 

O((m2/  log’ m)(n/m))  = O(rnn/ log’ m)  processors. From each DISTG, matrix, extract 

its submatrix Dc,. We are now left with the task of combining the DG,’s into a single DG. 
In parallel, we recursively obtain the D-matrix of the union of the leftmost n/2m G;’s, and 

similarly the D-matrix of the union of the rightmost n/2m G;’s. We then combine these two 

D matrices into Dc by usins Ltrnma 3. This recursive combining procedure takes a total 

of O<lo$ TTI ! o s ( ~ / n )  j ti=.- with O( mn/  lo$ m) processors. The overall time complexity is 

therefore O(10g3 m - log2;7210,p(n/mjj = O(logn10g2 m).  0 

In view of the remarks made in Section 1, the following is an immediate consequence of 

the above theorem. 

Corollary 1 Let z and y be two strings over an alphabet I .  Let m = min(lz(,[p[), n = 
rnax(lz1, [VI). For edit operations of arbitrary nonnegative costs, the edit distance from z 

to y can be computed by  a CREW-PRAM in O(logn1og’ m )  time, O(rnn) space, and with 

O(mn/ log’ m) pmessors .  

5. Computing the actual path 

In this section we sketch a modification of the algorithm given in the previous sections 

which enables us to compute an actual shortest source-to-sink path in G within the same 

time, space, and processor bounds as in the length computation. 

13 



Figure 7. Illustrating the computation of the actual path. 

Theorem 3 Let G be an m x n grid DAG, m 5 n .  A shortest source-to-sink path in 

G can be computed b y  a CREW-PRAM in O(lognlog2m) time, O ( m n )  space, and with 

O ( m n /  log2 m) processors. 

The rest of this section proves the above theorem. 

We begin with the case m = n, i.e. an m x m grid DAG. We cannot afford to let the 

matrix DISTc of Section 3 be a matrix of paths instead of lengths, because that would take 

m3 space, killing any hope of a polylog time algorithm that does not use an almost cubic 

number of processors. Instead, we modify the algorithm of Section 3 so that it also has the 

“side effect” of computing two (2m) x (2m) matrices HCUTc and VCCTc (mnemonics f x  

“horizontal cut” and %erxicL cut*. rcspecxiveiy) hzving the s a z e  i n k  doE:ain ac L3ISZ-z. 

These two matrices are global in the sense that they remain even after the recursive cail 

returns, and their significance is as follows. Let H be the horizontal boundary between 

A U C  and BUD, and let V be the vertical boundary between A U B  and C U D  (see Figure 

7 ) .  Let P A T H ( z ,  y )  be the lowest z-to-y path of cost DISTG(Z,  y); i.e. no other 2-to-y path 

of length DISTG(Z,~) goes through any vertex that is below a vertex of P A T R ( z , y ) .  It 

is easy to  prove that there is a unique such path P A T R ( z ,  y) (the proof is straightforward 

and is omitted). Then RCUTc(z,  y) is the leftmost intersection of PATR(z ,  y) with H, 
and VCUTc(z,y) is the lowest intersection of P A T H ( z , y )  with V .  If the intersection 

of P A T H ( z , y )  with H (resp. V )  is empty, then HCUTc(z,y) (resp. VCUTc(z,y))  is 

undefined. Because these additional matrices are global, after the algorithm terminates it 

leaves behind N ( m )  of them where 

N ( m )  = 4N(m/2) + 2 = O(mz). 

14 



Fortunately, even though there are O ( m 2 )  such HCUT and VCUT matrices that remain, 

the total storage space they take is S ( m )  where 

S( m )  = 4S( m/2)  + cm2 = O( m2 log m). 

Before showing how S ( m )  is decreased to O ( m 2 ) ,  we show how the matrices HCUT and 

VCUT are used to  retrieve the shortest source-to-sink path in G. It suffices to output the 

points on this path as a set (i.e. in arbitrary order), since a postprocessing sorting step 

puts them in the right order in O(1ogm) time and O(m)  processors [6]. Let s and t denote 

the source and sink of G, respectively. We first print HCUTc(s,t) and VCUTG(S ,~ ) ,  and 

then we recursively print the three portions of the shortest 5-to-t path determined by its 

two intersections with H and V (this involves three (m/2)  x ( m / 2 )  grid DAGS; see Figure 

7). The procedure can be implemented to run in O ( h  + logm) time and 2m/h processors, 

where h 5 m is an integer of our choice, by maintaining the property that each recursive 

call of size m' 2 h gets assigned 2m'/h processors (the bottom of the recursion is when 

problem size m' becomes ,< h, at which time a single processor finishes the job sequentially, 

in O(m')  time). (We would, of course, choose h = logm.) 

We bring the space complexity S ( m )  down by storing each row (say, row p )  of the HCUT 

(or V C L T )  matrix in an O(n)-bit  vector R O W ( p )  that is '.packed" in O(m/ log m) registers 

of size log m bizs each. (The zssuzption that wG;d size is a logarithlzic function of problem 

size is a standard one i3j.j Lec us immediately point out that a consequence of this encoding 

scheme is that we now have S ( m )  = O(m2) .  To see this, let BITS(m)  be the total number 

of bits used by the encoding scheme, and note that S(m)  = O(BITS(m)/ logm), since each 

register contains logm bits. Thus it suffices to show that BITS(m)  = O(m210gm). But 

this t t i v i d y  follows from the fact that BITS(m)  = 4BITS(m/2)  + O(m2) .  

We now describe the encoding scheme used for storing row p of (e.g.) HCUT in the 

O(m)-bit vector ROW(p). We exploit the fact that the contents of row p happen to  be sorted 

by the left-to-right linear ordering of the points on H .  More precisely, if the points of H 

are denoted by 1,. . ., m in left-to-right order, then row p contains a nondecreasing sequence 

of O(m) integers between 1 and m. Instead of storing the entries of row p ,  we therefore 

store the sequence of differences between the consecutive entries of row p .  This sequence of 

differences is stored in unary in the O(m)-bit vector ROW(p), with as many consecutive 1's 

as needed to  encode a particular difference, and using a 0 as a separator between consecutive 

non-zero entries. For example, if row p contains the sequence (3,3,5,7,9,11) then the 



sequence of differences is (3 ,0 ,2 ,2 ,2 ,2)  and ROW(p)  = (11100110110110110). We can 

actually obtain R O W ( p )  without going through the intermediate step of computing the 

sequence of differences: simply observe that if the i-th entry of row p is k then the ( i  + k)th 

entry of ROW(p) is a 0 (in our example, the fourth entry is 7 and hence the eleventh entry 

of R O W ( p )  is a 0). This observation implies that we can obtain ROIV(p)  in O(q + logm) 

time with O ( m / q )  processors by first initializing all the entries of R O W ( p )  to 1, and then 

changing some of these into 0’s according to the observation. Reading the k-th entry of 

row p is now done by computing the sum of all the entries of ROIY(p) that precede its 

b-th leftmost zero; i.e. it requires a parallel prefix computation [lo] on ROIV(p) and hence 

O(1ogm) time, so that extracting the s-to-t path now takes O(logz m) time rather than the 

previous O(1og m). This fact is of no consequence, however, since the bottleneck in the time 

complexity comes from the computation of the DISTc matrix. 

This completes the proof of Theorem 3 for the case m = n. 

It is not hard to see that, so long as m = n, the above procedure actually works when 

s and t are arbitrary points on the boundary of G. This observation implies that, for 

the case m 5 n, it suffices to find for every i E (1,. . . , (n /m)  - 1) the lowest point (call it 

CROSS(i))  at which a shortest path from s to t crosses the boundary between G; and G;+I. 

Once we have these CROSS(i)’s, we can use the procedure of the previous paragraph to 

obtain the actual path joining each CROSSj i )  to CRGSS;i  - 1) in ::=e O(l02  m). s?zce 

O(mzn/m) = O(mn) and with O((mz/  logznz)(n/m)) = O(rnn/ logzm) processors. K e  

obtain the CROSS(i)’s as follows. Refer to Section 4, the proof of Theorem 2: l4‘e modify 

that procedure so that, as the procedure computes the D-matrix, it  now also produces as a 

side effect a global m x m matrix CUTG. The significance of this matrix is that CUTG(Z, y) 

is the lowest point of intersection of any shortest z-to-y path with the boundary separating 

the two recursive calls. The total number of such CUT matrices is O(n/rn) ,  and their total 

storage is O(mn). We use these CUT matrices to output the CROSS(i)’s as a set (i.e. 

unordered) by first printing CUTG(S, t ) ,  and then recursively printing the CROSS(i)’s that 

are to  the left of CUTc(s,t), and simultaneously (i.e. in parallel) those to  its right. It is 

easily seen that the CROSS(i)’s are produced in time O(log(n/m)), and that there are 

enough processors to carry out the procedure. A post-processing sorting step orders the 

CROSS(i)’s. This completes the proof of Theorem 3. 0 

An immediate consequence of Theorem 3 is the following. 

16 



Corollary 2 Let z and y be two strings over an alphabet I .  Let m = min(lxl,lyl), n = 

max(lx1, Iyl) .  For edit operations of arbitrary nonnegative costs, an optimal edit script from 

x to y can be computed b y  a CREW-PRAM in O(1ogn log’m) time, O(mn) space, and with 

O( mn/ log’ m) processors. 

6.  A faster CREW-PRAM algorithm 

This section gives a CREW algorithm that is faster by a logm factor and uses O(mn/logm) 

processors. More precisely, we establish the following. 

T h e o r e m  4 Let G be an m x n grid DAG, m 5 It. A shortest source-to-sink path in 

.G can be computed by a CREW-PRAM in O(logn1ogm) time, 0 ( m n )  space, and with 

O( mn/ log m) processors. 

Corollary 3 Let z and y be two strings over an alphabet I .  Let m = min(/z[, [ V I ) ,  n = 
rnax(lz1, Iyl). For edit operations of arbitrary nonnegative costs, an optimaZ edit script from 

x to y can be computed by a CREW-PRAM in O(lognlogm) time, O(mn) space, and with 

O( mn/ log m) processors. 

From the developments of sections 2-5, it should be clear that in order to establish the 

above theore-,. it scSces  to show that: 

1. The matrix DISTAua can be obtained from DISTA and DISTB in O(1ogm) time, 

O(m2) space, and with 0(m2/ logm) processors, and 

2. The matrix D o  can be obtained from Dcl and Dc,  (see Definition 3 and Figure 5 )  

in O(1ogm) time, O(m2) space, and with O(m2/logrn) processors. 

Since the proofs of 1 and 2 are very similar, we only give that for 1. Thus the rest of 

this section deals with how to  obtain DISTAUB from DISTA and DISTB in OQogm) time, 

O(m2) space, and with O(m2) processors. 

6.1. Obtaining one row of D I S T A ~ B  

This subsection gives an O(1ogm) time, O(m1ogm) space, and O(m1ogm) processor d- 

gorithm for obtaining one particular row of DISTAUB, i.e. computing O(v,w) for a fixed 

v E LA arid all w E L E .  The fixed vertex v is implicit in the rest of this subsection, so that 

whenever we refer to a “path to w” it is understood that this path originates at D. 

17 



We refer to the vertices on the boundary common to A and B (denoted A n B  for short) 

as crossing vertices and number them c1, c2,. . . , c , , , / ~ ,  where the numbering is from left to 

right along the common boundary. We refer to the vertices in LE as destination vertices 

and denote them w1, w2, . . . , wm, numbered according to <E, their order in L B .  

Definition 4 -4 crossing interval is a non-empty set of contiguous crossing vertices {ci ,  c;+1, 

- - .  cj}.  

We say that crossing interval I is to the left of crossing interval J, and J is to the right of 

I ,  if the rightmost vertex of I is to the left of the leftmost vertex of J. 

Definition 5 Let F E AnB and w E LB,  i .e. F i s  a set of crossing vertices (not necessarily 

an interval) and 20 is a destination vertez. Let eF(W) denote the leftmost crossing vertex 

in F incident to a (v, w )  path that is shortest among all ( v ,  w )  paths constrained to pass 

through F .  

Note that &(w) may differ from O(v, w), but that eAnB(W) = O(v, w). 

The following lemma is the analogue, for constrained paths, to property (2) of Section 2. 

Lemma 3 Let F A n B and w1, w2 E LB. If w1 < B  w2, then O~(w1) is not to the right 

of e+$. 

Proof. Identical to that of property (2) of Section 2, and hence omitted. 0 

We now give an informal description of the algorithm. 

If U is any set of destination vertices and I is any crossing interval, then we will define 

6 z ( U )  to  be a data structure that contains enough information to determine ez(w) for all 

w E U. The details of that data structure will be explained later. 

It is useful to think of the computation as progressing through the nodes of a tree T 

which we now proceed to define. 

We define a crossing interval to be diadic if it is either A n B  (i.e. it consists of all crossing 

vertices), or if it is the the left or right half of a diadic crossing interval. Note that there 

are exactly m - 1 diadic crossing intervals, which form a complete binary tree T rooted at 

A n  B, and whose m/2 leaves are the m/2 crossing vertices (the i-th leaf of T containing c;, 

the i-th leftmost crossing vertex). Thus the diadic crossing interval at  an interior node of 

T is simply the union of the diadic crossing intervals of its two children in T .  We can talk 

18 



about the height and the children of a diadic crossing interval (= its height and children in 

TI.  
Since the m - 1 diadic crossing intervals are the only crossing intervals we shall be 

interested in, from now on we simply say “interval” as a shorthand for “diadic crossing 

interval”. Thus whenever we refer to an interval I we are implicitly assuming that I E T, 

i.e. that I is one of the m - 1 diadic crossing intervals. We use III to denote the size of 

the interval, i.e. the number of crossing vertices in it. Observe that C I ~ T  111 = O(m1ogm). 

Thus we have enough processors to associate 111 of them with each interval I (i.e. node I )  of 

T. Similarly, we can afford to use O(lI l )  space per interval I. The computation proceeds in 

2 log m - 1 stages, each of which takes constant time. The ultimate goal is for every interval 

I to compute Oz(L,). The structure of the algorithm is reminescent of the cascading divide- 

and-conquer technique [6,3]: each I E T will compute O r (  U) for progressively larger subsets 

U of LB,  subsets U that double in size from one stage to the next of the computation. We 

now proceed to state precisely what these subsets are. 

Definition 6 A k-sample of LB is obtained by choosing every k-th element of LB (i.e. 

every element whose rank in LB is a multiple of k). For example, a 4-sample of LB is 

( ~ 4 , 2 0 8 , .  . . , Wm). For k E {0,1,. . . , logm}, let U k  denote an (m/2k)-sample  of LB.  

... 
Ulogm = ( ~ 1 ,  ~ 2 ,  - - - 9 wm} = LB. 

Note that l u k l  = Zk = 2Iuk-11. 

At the t-th stage of the algorithm, an interval I of height h in T will use its III processors 

to compute, in constant time, O I ( U t - h )  if h 5 t 5 h + log m. It does so with the help of 

information from Or( U t - l - h ) ,  OLeftChild(z)(  Ut-h), and ORightChild(z)( Ut-I,), all of which are 

available from the previous stage t - 1. If h > t or t > h+log rn then interval 1 does nothing 

during stage t .  Thus before stage h the interval I lies “dormant”, then at  stage t = h it first 

‘kakes up” and computes Or(Uo), then at  the next stage t = h + 1 it computes Or(U1), etc. 

At step t = h + logm it computes t91(Ulogm), after which it is done. The details of what 

19 



information I stores and how it uses its 111 processors to perform stage t in constant time 

are given below. First, we observe the following. 

Lemma 4 The algorithm terminates after 2 log m - 1 stages. 

Proof. After stage h + logm every interval I of height h is done, i.e. it has computed 

81(LB) .  The root interval has height log rn - 1 and thus is done after stage 2 log m - 1. 0 

Thus to establish the main claim of this subsection, it suffices to prove the following 

lemma. 

Lemma 5 With 111 processors and O( 111) space assigned to each interval I E T ,  every stage 

of the algorithm can be completed in constant time. 

The rest of this subsection proves the above lemma. 

We begin by describing the way in which an interval I at height h in T stores e,( U t - h )  

using only 111 space. Rather than directly storing the values 8z(w) for all 20 E Ut-h (which 

would require IUt-hl space), we store instead the inverse mapping, which turns out to have a 

compact O( 111) space encoding because of the monotonicity property guaranteed by Lemma 

3. In other words, for each c E I ,  let 

Then Lemna 3 implies that the elenems of z ~ ( c , t )  are contiguous in the list K+k. More 

specifically, the sets X I ( C , ~ ) ,  c E I ,  form a partition of the set Ut-h into 111 subsets each of 

which is either empty or contains contiguous elements in Ut-h. Therefore I does not need 

to store the elements of 7iz(c, t )  explicitly, but rather by just remembering where they begin 

and end in CT+h, i.e. O(1) space for each c E I. Of course U t - h  is itself not stored explicitly 

by I, since the height h and stage number t implicitly determine it. Thus O(lI1) space is 

enough for storing x l ( c ,  t )  for all c E I .  

Interval I stores the sets X I ( C ,  t ) ,  c E I ,  in an array RANGEr, with entries RANGEz(c) = 

(w;,wj) such that wi (resp. wj) is the first (resp. last) element of Ut-h that belongs to 

X I ( C ,  t) .  If T I ( C ,  t )  is empty then RANGEr(c) equals 0. At stage t of the algorithm, I must 

update the RANGE1 array so that it changes from being a description of the xz(c, t - 1)'s 

to being a description of the RI(C, t)'s. The rest of this subsection need only show how such 

an update is done in constant time by the 111 processors assigned to I .  Of course, since 

we are ultimately interested in B A ~ B ( w )  for every w E LB,  at the end of the dgorithm we 

20 



must run a postprocessing procedure which recovers this information from the Rrlil’GE.4,~ 

array available at  the root of T ,  i.e. it explicitly obtains OftnB(w) for all 20 E Viagrn. But this 

postprocessing is trivial to perform in O(1ogm) time with O ( m )  processors, and we shall 

not concern ourselves with it any more. 

In the rest of this subsection, intervals L and R are the left and (respectively) right 

children of I in T .  Observe that, for any destination w, Or(w) is one of OL(w) or OR(w). 

Furthermore, if O,(w) = OL(w) then OI(w’) E L for every w’ smaller than w (in the <B 

ordering). Similarly, if O,(w) = B R ( w )  then Ol(w‘) f R for any w’ larger than w. (These 

observations follow from Lemma 3.) 

The RANGE1 array alone is not enough to enable I to perform the updating required 

at  stage t. In addition, at each stage t ,  I must compute in a register called CRITICAL1 

an entry Criticalz(t) defined as follows. 

Definition 7 At each stage t ,  let the critical destination for I ,  denoted Critical~(t), be the 

largest w E Ut-h such that ez(W) = e&). If there is no such 20 (Le. if  OZ(w) = OR(w) for 

all w E Ut-h), then Criticalz(t) = 0. 

Note that Lemma 3 ensures that Criticalr(t) is well defined. We shall later show how 

storicg and maintaining this critical destination enables I to update the RA,VGEI array 

in coastant t ine.  Of course i; ais0 places on I the burden of updating its CRITICAL1 

iogistei so that after stage t it contains CriticaZz(t) rather than Criticalz(t - 1). We shall 

later show that updating the CRITICAL1 register can be done in constant time as well. 

We now complete this subsection by explaining how I performs stage t ,  i.e. how it obtains 

Criticalz(t) and the nz(c,t)’s using the ~ r ~ ( c , t  - 1)’s, the n ~ ( c , t  - 1)’s, and its previous 

critical index CriticaZl(t - 1). The fact that the 111 processors can do this in constant time 

is based on the following three observations: 

CriticaZz(t) is either the same as Crit ical~(t  - l), or the successor of CriticaZz(t - 1) in 

Ut-h- ( 5 )  

CriticaZr(t) in the <B ordering}. (6) 

equal to Criticalz(t) in the < B  ordering}. (7) 

If c E L then nl(c,t) = x ~ ( c , t  - 1) - {the elements of n ~ ( c , t  - 1) that are larger than 

If c E R then nl(c,t)  = n ~ ( c , t  - 1) - {the elements of K R ( C , ~  - 1) that are less than or 

Correctness of (5)-(  7) follows from the definitions. Their algorithmic implications are dis- 

cussed next. 

21 



Upda t ing  t h e  CRITICAL1 register 

Relationship ( 5 )  implies that in order to update CRITICAL1 (i.e. compute Crit iculr( t ) )  

all I has to  do is determine which of CriticaIl(t - 1) or its successor in U t - h  is the correct 

value of Crit icafr( t ) .  This is done as follows. If Criticalr(t- 1) has no successor in U t - h  then 

Crit icaZ~(t  - 1) = tu,,, and hence Criticalr(t) = Criticalr(t - 1). Otherwise the updating 

is done in the following two steps. For shorthand, let T denote Criticafr(t - l), and let s 

denote the successor of T in U t - h .  

0 The first step is to compute 0,(5) and OR($) in constant time. This involves a search 

in L (resp. R )  for the crossover c in L (resp. R)  whose R L ( C ,  t - 1) (resp. X R ( C ,  t - 1)) 

contains s. These two searches in L and R are done in constant time with the III 

processors available. We explain how the search in L is done (that in R is similar and 

omitted). I assigns a processor to each c E L ,  and that processor tests whether 5 is 

in n ~ ( c , t  - 1); the answer is “yes” for exactly one of those ILI processors and thus 

can be collected in constant time. Thus I can determine O L ( S )  and 8 R ( S )  in constant 

time. 

0 The next step consists of comparing which of the following two paths to 5 is better: the 

oce through 6 ~ ( 5 ) ,  or the one throcgh @ 3 ( 5 ) .  E the path through 6 3 ( 5 )  is the betier of 

the t xo  then Criticclr(t) is the s m e  zs CriticalI(t- 1) a d  the C I ~ I T I C - ~ L I  ieghter , 

stays the same (contzining rj. Otherwise Criticalr(t) is s, m d  we set CRITIC-ALl 

equal to s. This comparison of the two paths and resulting update are done in constant 

time (by one processor, in fact). 

. 

We next show how the just computed CriticaZz(t) value is used to compute the K I ( C ,  t ) ‘ s  

in constant time. 

Updating the RANGE1 array 

Relationship (6) implies the following for each c E L: 

1. If T L ( C ,  t - 1) is to the left of Criticalz(t) then 5il(c, t )  = T L ( C ,  t - 1). 

2. If KL(C, t - 1) is to the right of Criticalz(t) then nz(c, t )  = 0. 

3. If n ~ ( c ,  t - 1) contains CriticalI(t) then it consists of the portion of l i ~ ( c ,  t - 1) up to 

(and including) Cri t ical~( t ) .  

22 



Figure 8. Illustrating the second stage of the computation. 

The above facts 1-3 immediately imply that 0 ( 1 )  time is enough for [ L [  of the II( processors 

assigned to I to compute xz(c, t )  for all c E L ,  by adjusting the RANGE1(c) value according 

to rules 1-3 above (recall that the R L ( C , ~  - 1)'s are available in L from the previous stage 

t - 1, and Criticalz(t)  has already been computed and is in the CRITICAL1 register). 

-4 similar argument shows that relationship (7) implies that IRI processors are enough 

for computing nz(c, t )  for all c E R.  Thus I can update its RANGE1 array in constant time 

with III processors. This completes the proof of Lemma 5 .  

6.2. Obtaining all rows of DISTA~B 

in O(logm) time all the O(v,w)'s (heace for computing the DISTAUa matrix). Let LA and 

L B  be as in previous sections. Our task is to  compute O(v, w )  for all u E LA and all w E LB. 
We use S(L, k) t o  denote the k-sample of a list L. 

In the first stage of the computation, we assign nzlogm processors to  each v E S(LA,log' m). 

Then, in parallel for a l l  u E s(LA,lOg' m),  we use the method of the previous subsection 

to obtain O(v, 20) for all w E LB. This first stage of the computation takes O(1ogm) time, 

O(nz2) space, and O(m'/logm) processors, and obtains O(v, w) for all t, E S(L~, log '  m) 

and w E LB. 

In the second stage of the computation, we assign 2m processors t o  each 20 E S(LB,logrn), 

with the task of computing O(v, w) for all  v E LA. These 2 n  processors perform this com- 

putation for their particular w in O(1ognz) time, as follows. The set of m/lo,* - m values 

{O(v,w) I v E S(LA,lOg' m ) )  partitions the common boundary of A and B into m/log*m 

pieces J1, J2,. . . (see Figure 8). Let 11,12,. . . be the nz/ 108 m pieces (of size log' rn each) 

23 



into which S ( L A ,  log' m)  partitions L A  (see Figure 8). Partition the group of 2m processors 

assigned to w into m/ log' m subgroups, where the i-th subgroup contains log' m + lJ,l 

processors whose task is to compute, for all v E I;, which element of J; equals 8(v,  20). This 

subgroup of log' m + IJ;I processors does this as follows. 

1. It gives each of the logm elements of S(I;,logm) (say, to element v) 1 + IJiI/logm 

processors that v uses to find out, in O(1ogm) time, which element of J; equals 

8(v,w). The set of logm values {e(v,w) I v E S(I;,logm)} partitions J; into logm 

pieces Ji,1, J;,',. . .. Let I;,1, I;,',. . . be the logm pieces (of size logm each) into which 

S(I;,  log m)  partitions I;. 

2. It partitions its log2 m + IJ;I processors into log m subsubgroups, where the k-th 

subsubgroup contains log m+ 1 J;,kI processors whose task is to compute, for all v E I;,&, 

which element of J;,k equals 8(v ,  w). This subsubgroup of logm+IJ;,kl processors does 

this in O(log m) time by giving to each of the log m elements of I;,k (say, to element 

v) 1 + IJ;,kl/logm processors that v uses to find out, in O(1ogm) time, which element 

of J;,k equals 8(v ,w) .  

In the third stage of the computation, we assign 2 m / , / l G  processors to each v E 

S ( L A ,  J i ) ,  with the task of computing @ ( v ,  zc) for a2 x f Lg. Those 2 r n / , / l l  pro- 

CSEO~S Fezform t h i s  cozi3ntatioc fcr their ?a:ticdai 2' in C?(log m) ;:me, zs ~ C ~ O W - S .  The set  

of m/ log m va,lu~s {f?(v? w) I w f S ( L B ,  log m ) }  partitions the common boundary of A 2nd B 

into m/  log m pieces J1, J 2 , .  . .. Let Il,Iz,.  . . be the m/ log m pieces (of size log m each) into 

which S(LB,  log m) partitions L B .  Partition the group of 2 r n / , & X  processors assigned 

to  v into m/  logm subgroups, where the i-th subgroup contains d l  + I J i l / d I  pro- 

cessors whose task is to compute, for all w E I;, which element of Jj equals 8 ( v , w ) .  This 

subgroup of d= + I J ; l / , / I I  processors does this as follows. 

1. It gives each of the , / l l e l e m e n t s  of S(Ii ,  J I )  (say, to  element w) 1+1 JiI/ logm 

processors that w uses to  find out, in O(1og m)  time, which element of Ji equals 8(v, w). 

The set of d i v a l u e s  {e(v, w) I w E .!?(I;, JIG)} partitions J; into d* pieces 

J;J, J;,',. . .. Let Ii,l, I;,', . . . be the 4' pieces (of size 4- each) into which 

S(I;, , A I )  partitions I;. 

2. It partitions its ,.A=+ I J ; l / d e  processors into JIG subsubgroups. The k-th 

snbsubgroup contains 1 + I J ; , k l / d e  processors whose task is to compute, for all 

24 



w E Ii,k, which element of J, ,k equals O(v, w). This subsubgroup of 1 + \ J , , k l / d F  

processors does this in O(1ogm) time as follows: 

(a) If IJi,kI 2 logm, by giving to each of the elements of I; ,k (say, to ele- 

ment w)  IJ; ,k l /  log m processors that w uses to find out, in O(1og m)  time, which 

element of J j , k  equals e(v, w). 

(b) If IJ;,kl < log m, by partitioningI;,k into 1 + 1 J ; , k I / 4 F e q u a l  pieces I ; , k , l ,  Ii,k,z,. . . 
(each of size roughly logm/lJi,kl) and giving each I,&,/ one processor. This 

processor sequentially finds 8(v ,w)  for all w E Ij,k,/ in O(1ogm) time, since 

lIi,k,/llJi,kl = O(1Og m). 

The fourth stage of the computation “fills in the blanks” by actually computing 8(v, w) 

for all v E L A  and w E L B .  It does so with only mz/  logm processors by exploiting what was 

computed in the previous stages. Partition L A  into m / G  contiguous blocks XI, X2,. . . 
of size each. Similarly, partition LB into m/d= contiguous blocks YI, Yz, . . . of 

size 4- each. Let Z;j be the interval on the boundary common to A and B that is 

defined by the set of O(v,w) such that v E X; and w E 5. Of course we already know 

the beginning and end of each such interval Zij (from the second and third stages of the 

computation). Furthermore, we have the following: 

Proof. First, observe that Z;, and Z;+l,j+l are adjacent intervals that are disjoint except for 

one possible common endpoint (the rightmost point in Z;j and the leftmost point in Z;+l,,+l 

may coincide). This observation implies that for any given integer 6 (0 5 161 5 m / d c ) ,  
we have: (It is understood that lZ;jl = 0 if j < 1 or j > rn /d l . )  

The lemma follows from the above simply by re-writing the summation in the lemma’s 

statement : 

The above lemma implies that with a total of m2/ logm processors, we can afford to 

assign a group of 1 + 1 Z;j 1 / d e  processors to  each pair X;, 5. The task of this group is to 



compute O(v, w) for all v E -Y, and w E 3; (of course each such e(v,  w )  is in &]). It suffices to 

show how such a group performs this computation in O(1ogm) time. If IZtjI _< 4- then 

a single processor can solve the problem in O ( ( d i ‘ ) 2 )  = O(1og m )  time, by the quadratic 

work method of Section 3. If IZijl > J l =  then we partition Zij into I Z i j l / f l I  pieces 

J1, J2,.  . . of size each. We assign to each J k  one processor which solves sequentially 

the sub-problem defined by Xi ,Jk ,Y , ,  i.e. it  computes for each v E Xi and w E 5 the 

leftmost point of Jk through which passes a path that is shortest among the v-to-w paths 

that are constrained to go through Jk. This sequential computation takes O(1ogm) time 

(again, using the method of Section 3). It is done in parallel for all the Jk’s. Now we must, 

for each pair v ,w  with v E Xi and w E Yj, select the best crossing point for it among the 

I Z i ; l / J e  possibilities returned by each of the above-mentioned sequential computations. 

This involves a total  (i.e. for all such V ,  w pairs) of O ( l X i l l Y , I I Z i j l / d I )  = O ( l Z i j / d I )  

comparisons, which can be done in O(1ogm) time by the l Z i j l / d l  processors available 

(Brent’s Theorem). 

7. CRCW-PRAM algorithm 

This subsection briefly sketches how the partitioxug schemes of Subsection 6.2 translate 

into a CRCW-PR-4M algorithm of time complzxity O(log n(1oglog m)*) and processor com- 

plexity O j m n j  loglog m). A+n. it sufices t O  show how DIST,t,s c m  be ob&.ned f roa  

D I S ~ ~  and DISTg in O((log1og rn)2 )  time and with m2/ loglog m processors. 

The procedure is recursive, and we describe it for the more general case when DISTA 

is l x h and DISTB is h x l (that is, l L ~ l  = l L ~ l  = l and the common boundary has 

size h). It suffices to show that for any integer q 5 h of our choice, t h / q  processors can, 

in O((q + 1oglogh)loglogl) time, compute e(v ,w)  for all v E L A  and w f LB.  If we can 

show this then we are done because we can choose q = log log h, and we have t = m and 

h = m/2.  

The first stage of the computation partitions LA into f i  contiguous blocks X I ,  X 2 , .  . . 
of size f i  each. Similarly, LB is partitioned into f i  contiguous blocks YI, yZ, . . . of size fi 
each. For each pair v, w such that v is an endpoint of an Xi and w is an endpoint of a Y ,  , we 

assign h/q  processors (we have enough processors because there are O ( t )  such pairs). These 

processors compute, in O(q + loglogh) time, the point O(v, w). Thus, if we let Zij denote 

the interval on the boundary common to A and B that is defined by the set e(z1,w) such 

26 



that v E X ;  and w E q,  then after this stage of the computation we know the beginning 

and end of each such interval Zij. 

The second stage of the computation “fills in the blanks” by doing, in parallel, t recursive 

calls, one for each X;, 5 pair. The call for pair X i ,  y3 returns O(v, w) for all v E X; and 

w E 5 (of course each such O(v, w) is in Z;,). 

The time and processor complexities of the above method satisfy the recurrences: 

~ ( t y  h )  i max{c2eh/q, ~ ( 4 ,  IzijI)}, 
1 , j  

where c1 and c2 are constants. The time recurrence implies that T(!, h )  = O((qtlog1ogh) 1oglogC). 

That the processor recurrence implies P(t ,h)  = O(Ch/q) becomes apparent once one ob- 

serves that lZ;jl = O(h&‘). The proof of this last fact is similar to  that of Lemma 6: 

Ci,j  lZ;j( is re-written as c;,6 1Z;,;+61 _< C6 h = O(h&). This completes the proof of the 

claimed CRCW-PRAM bound. 

Of course the same algorithm as above yields different complexity bounds when one 

uses in it other CRCW-PRAM methods for computing the min of h objects. For example, 

one can compute the min of h objects in O ( k )  time using h1+2-k processors on a CRCW- 

PRXM, where I ;  is azty iriteger of oile‘s choice. If such a method is used in conjunction with 

rhe aSove a lgor ikn .  t h i n  :5e aigori:hm rum in O ( k  log n log log rn) time with O ( r ~ r n ~ + ~ - ~ )  ’ 

processors. 

8 .  Conclusion 

We gave a number of PRAM algorithms for the string editing problem. The algorithms were 

fast and efficient, but the best time x processors bound was still a factor of logn away from 

the O(lzllpl) time complexity of the best serial algorithm for the problem. 

Acknowledgement. The authors are grateful to  the referees for their careful reading and 

useful comments. 

References 
[l] A. Apostolico and C. Guerra. The Longest Common Subsequence Problem Revisited, TR-CS543 

[2] A.V. Aho, D.S. Hirschberg and J.D. Ullman. Bounds on the Complexity of the Longest Common 
Purdue Univ. (1985), also Algorifhmica 2, pp.315-336 (1987). 

Subsequence Problem, Journal of the ACM 23, 1, pp.1-12 (1976). 

27 



[3] A.V. Aho, J.E. Hopcroft and J.D. Ullman. The Design and Analysis of Computer Algorzthms, 
Addison-Wesley (1974). 

[4] M.J. Atallah, R. Cole and M.T. Goodrich. Cascading Divide-and-Conquer: A Technique for 
Designing Parallel Algorithms, Proc. 28th Annual IEEE Symp. on Foundations of Computer 
Scz., Marina Del Rey, California, 1987, pp.151-160. 

[5] R.P. Brent. The Parallel Evaluation of General Arithmetic Expressions, Journal of the A C M  
21, 2, pp.201-206 (1974). 

[6) R. Cole. Parallel Merge Sort, Proc. 27th Annual IEEE Symp. on Foundations of Computer 
Science, pp.511-516 (1986). 

[7] F.E. Fich, R.L. Radge and A. Widgderson. Relation Between Concurrent-Write Models of 
Parallel Computation, Proc. Third Annual A C M  Symp. on Distributed Computing, pp.179-189 
(1984). 

[8] Z. Galil and R. Giancarlo. Data Structures and Algorithms for Approximate String Matching, 
Tech. Report, CS Dept., Columbia University, NY (1987). 

[9] A.G. Ivanov. Recognition of an Approximate Occurrence of Words on a Turing Machine in Real 
Time, Math. USSR lzvestya 24, 479-522 (1985). 

R.E. Ladner and M.J. Fischer. Parallel Prefix Computation, Journal of the ACM 27,4, pp.831- 
838 (1980). 

G. Landau and U. Vishkin. Introducing Efficient Parallelism into Approximate String Matching 
and a new Serial Algorithm, Proceedings of the 18-ih ACM STOC, pp.220-230 (1986). 

V.1 Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals, Soviet 
Phys.  Dokl. 10, pp.707-710 (1966). 

H. M. Martinez (ed.) Mathematical and Computational Problems in the Analysis of Molecular 
Sequences, Bulletin of Mathemalical Biology (Special Issue Honoring hl. 0. Dayhoff)! 46, 4 
(1984). 

1%'. J. Masek a d  M. S. Pa:e:son. .A Faster l igor i thn  Csrqucing Scring Edit Diszaxes, JDumci 
of Compuier and Sysiem Scicnce 2G, ?p.lE-31 (1530j. 

T. R. Mathies. A Fast Parallel Algorithm to Determine Edit Distance, Tech. Rept. CMU-CS- 
88-130 (April 1988). 

S. B. Needleman and C.D. Wunsch. A General Method Applicable to the Search for Similarities 
in the Amino-acid Sequence of Two Proteins, Journal of Molecular Biology 48, pp.443-453 
(1973). 

S. Ranka and S. Sahni. String Editing on an SIMD Hypercube Multicomputer, Univ. of Min- 
nesota Computer Science Dept. Tech. Rept. 88-29, March 1988. (Submitted to Journal of Par- 
allel and Distributed Computing.) 

D. Sankoff. Matching Sequences Under Deletion-insertion Constraints, Proceedings of the Na- 
tional Academy of Sciences of the U.S.A. 69, pp.4-6 (1972). 

D. Sankoff and J. B. Kruskal (eds.). Time Warps, String Edits and Macromolecules: The Theory 
and Practice of Sequence Comparison, Addison- Wesley, Reading, PA (1983). 

P.H. Sellers. An Algorithm for the Distance between two Finite Sequences, J. of Combinaforial 
Theory 16, pp.253-258 (1974). 

P.H. Sellers. The Theory and Computation of Evolutionary Distance: Pattern Recognition, 
Journal of Algorithms 1, pp.359-373 (1980). 

Y. Shiloach and U. Vishkin. Finding the hlaximum, Merging and Sorting in a Parallel Model 
of Computation, Journal of .4lgorrthms 2, pp.88-102 (1981). 

28 



[23] E. Ukkonen. Finding Approximate Patterns in Strings, Journal of Algorithms 6, pp.132-137 

[24] L. Valiant. Parallelism in Comparison Problems, SIAM J. on Computing 4, 3 ,  pp.3.18-355 

[253 R. A. Wagner and M. J. Fischer. The String to String Correction Problem, Journal of the  ACM 

[26] C.K. Wong and A.K. Chandra. Bounds for the String Editing Problem, Journal of the ACM 

(1985). 

(1975). 

21,1, pp.168-173 (1974). 

23, 1, pp.13-16 (1976). 

29 


